
Copyright © 1999 by Geoffrey C. Yerem, First Printing

Build Your Own MC68HC11 Computer Trainer

Geoffrey C. Yerem
Department of Electrical Engineering
University of Tennessee, Knoxville

1 Introduction
The electronic computer has been called the most complex machine built by
man, and anyone fascinated by technology recognizes the computer as the
ultimate machine. Infinitely configurable through programming, the computer
is a machine that is malleable as clay is to a skilled sculptor. If you love
computers, you probably want to become a skilled computer sculptor. Becoming
a skilled programmer provides half of the skills you need. Completing your
skills means understanding computer hardware, at the heart of which is the
microprocessor. If learning about computer hardware is your goal, then read on.
This paper is going to show you how to build your own practical, working
computer from scratch.

This document will show you how to build your own computer trainer based
on the Motorola MC68HC11 microprocessor. The design used here is similar to
many of the commercially available MC68HC11 single board computers,
particularly the Motorola M68HC11 Evaluation Board (EVB). You will learn a
great deal by building this project and, in the end, you will have a working
EVB of your very own that you can program and customize.

This document contains six sections:

Section 1 - Introduction
Section 2 - The Structure of a Small Computer System
Section 3 - Building the Computer
Section 4 - Testing the Computer
Section 5 - Using the Computer
Section 6 - Conclusion

The instructions in the rest of this document assume that you have had
little or no exposure to microprocessor electronics. You should, though, have
some computer programming experience, particularly with assembly language.
Also, you should have some experience with digital electronics as well as some
experience with basic electronic assembly. Barring no problems, you can
construct this project in about one full week. Good luck, you are on your way to
building your first, but probably not your last, computer.

2 Yerem: Build Your Own MC68HC11 Computer Trainer

2 The Structure of a Small Computer System
The purpose of a computer is to act out a series of directions given by a person,
ultimately performing some physical action. This goal starts with numbers.
Numbers, as it turns out, can represent any type of information. Since computers
manipulate numbers, computers also manipulate representations of information.
The form of numbers that electronic computers use are groups of binary digits or
bits. Bits are simply numerical digits which only have two states, 0 and 1.
This is just like a digit in our decimal system which has ten states, 0 through 9,
one state for each finger on our two hands. So you might say that by using the
binary system, a computer probably has only one finger on each of its hands! A
consequence of bits having fewer states than decimal digits is that you need
more binary digits to represent the same number in the decimal system.
Nonetheless, both number systems can each represent every possible number.
Ultimately, electronic computers use binary digits because by only having two
states it has a minimal chance of confusing one state with the other and tha t
provides a maximum level of reliability.

A computer uses its electronic versions of numbers to perform its purpose;
acting out a series of directions given by a person. Since numbers can represent
anything, we can use numbers to represent the instructions that we want the
computer to follow as well as raw information and even some physical actions
like turning on an indicator light, sending messages to a teletype or making a
sound.

The microprocessor chip contains all of the electronics needed to perform a
majority if not all of the actions of a computer system. Usually though, a
certain amount of the resources of a computer are too expensive or impractical to
squeeze onto one integrated circuit chip. The most notable of these resources is
memory. Memory is the single most expensive element of a computer system.
Memory gives the computer a place to store numbers. The more memory a
computer has, the more numbers it can store. Computer memory typically stores
raw data and programs.

If a microprocessor is going to work with external memory it needs external
signals to control the memory. These signals can be broken into three parts: an
address bus, a data bus and a control bus.

The address bus is a series of digital signal lines which can send out a
binary number which in turn represents a single location in the computer’s
memory space. Since the address bus can only represent a finite amount of
unique numbers, there can only be a finite number of memory locations in a
computer system.

Once you have a place to store numbers, you need a way access them. That’s
where the data bus comes in. Just like the address bus, the data bus is a series of
digital signal lines which can send and receive numbers. In this case, the
numbers represents raw data, physical actions or a program.

Finally, the control bus uses its digital signals to keep the address and data
busses of the microprocessor synchronized with the external components.

3

2.1 The Design
The computer we are about to build will have the Motorola MC68HC11
microprocessor at its core. Motorola designed the MC68HC11 so that it requires
a minimum of support circuitry in order to build a working design with it. This
will suit our purposes nicely since it will allow us to learn how to build a
computer without sinking in excessive complexity.

XTAL EXTAL

30 29

11
12

9

10

15
16

13
14

PB7

PB6
PB5
PB4
PB3
PB2

PB1
PB0

PC7

PC6
PC5
PB4
PC3

PC2
PC1
PC0

36
35

38
37

32
31

34

33

VRH
VRL

20

22
21

17

19

18

1

4

2
3

5

8

6
7

47

44

46

45

43
42

*IRQ
*XIRQ

25

24

*RESET

28
27
26

E

40
41

39

MODB(Vstby)
MODA(*LIR)

(U1)
MC68HC11A1P

AS

R/*W

PE0/AN0
PE1/AN1
PE2/AN2
PE3/AN3

PD0/RxD
PD1/TxD

PD2/MISO
PD3/MOSI
PD4/SCK
PD5/*SS

PA0/IC3
PA1/IC2
PA2/IC1

PA3/OC5/OC1
PA4/OC4/OC1
PA5/OC3/OC1
PA6/OC2/OC1

PA7/PAI/OC1

The MC68HC11 has many useful circuits already built into it. For example,
it has built-in digital I/O ports, a sophisticated timing system, an
asynchronous serial port for RS-232 communications, a synchronous serial port,
an analog-to-digital converter and a built-in crystal oscillator circuit. It also
has built-in memory such as 256 bytes of Random Access Read/Write Memory
(RAM), 512 bytes of Electrically Erasable Programmable Read Only Memory
(EEPROM) and in some versions, 8 kB of Read Only Memory (ROM). Having
all these resources on one chip allows the MC68HC11 to be used as a single-chip
microcontroller requiring no extra support chips. For this project though, we
will treat the MC68HC11 as a conventional microprocessor by adding various
external resources to it.

Following is a block-by-block description of the computer’s design using
sections taken from the main schematic diagram. The complete schematic
diagram can be found in Appendix 3.

A8
A9

A15
A14
A13

A12
A11
A10

AD7
AD6
AD5

AD4
AD3
AD2
AD1
AD0

AD7
AD6

AD5
AD4
AD3
AD2
AD1

AD0

AD7
AD6

AD5
AD4
AD3
AD2
AD1

AD0

A7
A6
A5

A4
A3
A2
A1
A0

14
13

8

7
4
3

18
17

11
12

9
10

15
16

13

14

PB7

PB6
PB5
PB4
PB3

PB2
PB1
PB0

PC7

PC6
PC5
PB4

PC3
PC2
PC1
PC0

36
35

38
37

32
31

34
33

13
14

11
12

17
18

15
16

B8

B7
B6
B5

B4
B3
B2
B1

A8

A7
A6
A5

A4
A3
A2
A1

7
6

9
8

3
2

5
4

15

11

19
16

5
2

9

6

8D

7D
6D
5D
4D

3D
2D
1D

8Q

7Q
6Q
5Q
4Q

3Q
2Q
1Q

*OE
1

C

19 1

A-B

12

28
27
26

E

D0

D1
D2
D3
D4
D5

D6
D7

*EN

74HC245
(U4)

(U3)
74HC373

Address Bus (A0:A15)

AS

R/*W

*PIA2

R/*W

E

A15

A14

A13

A12

A11

A10

3

4

1

2

5

6

17

16

19

18

13

15

14

11

98

7

*BOOT

*SPARE

*RDIO

PAL16L8-12

12

I

I

I

I

I

I

*WRIO

*PIA1

*EXTRA

*RAM

I

I

I/O

I/O

I/O

I/O

I/O

I/O

O

O

I

I

(U5)

1. This is the address/data demultiplexer
circuit. It separates the one address/data
bus into distinct address and data busses.
Multiplexing the address and data bus
saves 8 pins which can be dedicated to
other resources at the expense of requiring
an external demultiplexing circuit.

2. This is the Chip Select PAL. Its job is to
decode the address space and select the
appropriate memory chip. Its inputs are
the address lines as well as the E and
R/*W lines. Its outputs are the various
chip select signals.

4 Yerem: Build Your Own MC68HC11 Computer Trainer

25
24

Vcc

MODB(Vstby)
MODA(*LIR)

(RP1)
4.7 kΩ

(U1)
MC68HC11

J4

Vcc

PE0

3. These are the mode pins. These two pins
allow you to configure the MC68HC11 to
run in one of four modes. Pulling both
pins high, as in this case, puts the
microprocessor in Expanded Mode.

4. This is the “J4” jumper. The BUFFALO
monitor program uses this jumper to
determine whether or not to jump to the
internal EEPROM or run the BUFFALO
monitor at startup.

XTAL EXTAL

30 29
(R2) 10 MΩ

(Y1) 8.0 MHz

(C11)
22 pF

(C12)
22 pF

LVI
2

3

1
RESET

Vcc

Vcc

(U10)
MN13811-Q

(RP1)
4.7 kΩ

5. This is the oscillator circuit. It provides
the “heartbeat” for the microprocessor.
The oscillator generates an 8 MHz square
wave which is divided internally by a
factor of four to supply a 2 MHz clock
pulse to the microprocessor.

6. This is the reset circuit. Pressing the Reset
button will cause the computer to stop
what it is doing and start from scratch.
The LVI (Low Voltage Interrupt) chip can
also assert the Reset line if the power
supply voltage drops below 4 V. This
prevents the microprocessor from running
before the power reaches a meaningful
level.

D0

D1
D2
D3
D4
D5

D6
D7

17
16

19
18

12
11

15
13

23
21

2

3
4

24

25

7
8

5
6

9
10

A12

A11
A10

A9

A8
A7
A6
A5
A4
A3
A2

A1
A0

A12
A11
A10

A9

A8
A7
A6
A5
A4
A3

A2
A1
A0

22

*CE

*OE
20

1
Vpp

27
*PGM

Vcc

(U6)

27C64-250

O7

O6
O5

O3
O2
O1
O0

O4

D0

D1
D2
D3
D4
D5

D6
D7

17
16

19
18

12
11

15
13

23

21

3
4

24
25

7
8

5
6

9

10

A12
A11
A10

A9
A8
A7
A6
A5
A4

A3
A2
A1
A0

2 A12
A11
A10

A9
A8
A7
A6
A5

A4
A3
A2
A1
A0

I/O7

I/O6
I/O5
I/O4

I/O3
I/O2
I/O1
I/O0

22
*OE

*CE
R/*W

A13

A14
1 A14
26 A13

20
27

(U8)

HM62256-LP15

D
a

ta
 B

u
s

(D
0

:D
7

)

A
d

d
re

ss B
u

s (A
0

:A
1

5
)

7. This is one of the two EPROMs (Erasable
Programmable Read Only Memory). The
computer uses this memory chip to store
programs and data semi-permanently. In
other words, the information stored here
can only be erased by shining an
ultraviolet light into the glass window on
the chip.

8. This is the RAM (Random Access
Memory) chip. While the MC68HC11 has
256 bytes of RAM internally, this usually
is not enough for software development.
The HM62256 provides the computer
with an additional 32 kB of R/W memory.

5

Notice that the EPROM and the RAM chip have similar pin outs. This is
due to the JEDEC standard which specifies the pin outs of byte-wide (8-bit)
memory devices. The JEDEC standard allows memory of different sizes and
from different manufacturers to be used in the same sockets, with little or no
modifications.

PA2

PA0
PA1

PA3

PA4
PA5
PA6
PA7

CA1
CA2

RS0
RS1

E

R/*W
*RESET

*CS2

26
27
28
29

30
31

35
36

23
25
21
34

39
40

9
8

7
6
5
4
3

2

17
16

15
14
13
12
11

10

A1
A0

E
R/*W

*RESET

CS1

CS0

Vcc

22
24

32
33

(U2)

MC68B21

PPA7
PPA6
PPA5
PPA4
PPA3

PPA2
PPA1
PPA0

CA2
CA1

D0
D1
D2
D3

D4
D5
D6
D7

D0

D1
D2
D3
D4
D5

D6
D7

PPB0
PPB1
PPB2

PPB3
PPB4
PPB5
PPB6

PPB7

19
18 CB1

CB2

PB0
PB1
PB2
PB3

PB4
PB5
PB6
PB7

CB1
CB2

*PIA1 ($A000)

1

3

2

9

11

12

10

4

5

6

8

14

13

7

C1+

C1-

V+ V-

C2+

C2-

(U9)
MAX232CPE 1

2

3

4

5
9

8

6

7

DCD

TxD

RxD

DTR

PD1

PD0

Vcc

T

R

T

R

DSR

CTS

(C14)

10µF

(C13)
10µF

(C15)

10µF

(C16)
10µF

9. This is the PIA (Peripheral Interface
Adapter) chip. Since we are using the
MC68HC11 in expanded mode, I/O ports
B and C are unavailable for our use. The
MC6821 will give us two bi-directional
8-bit I/O ports to work with.

10. This is the RS-232 circuit. The MAX232
provides the interface between the serial
port on the MC68HC11 and the DB-9
connector. This buffer chip is required
because RS-232 requires relatively high
voltages (about ±12 V). Additionally, the
MAX232 has a charge pump circuit which
uses four capacitors to generate ±10 VDC
from the 5V supply. This way the whole
computer can run from a single 5V supply.

Additionally, the computer requires a +5 VDC @ 0.3 A power supply. For
this project, you can either purchase one or build a simple one from scratch.

Keep in mind that this design isn’t inscribed in stone. Feel free to modify
the computer in any way you see fit. You can learn a great deal by customizing
the computer.

6 Yerem: Build Your Own MC68HC11 Computer Trainer

3 Building the Computer
Before you start ordering the parts and constructing the computer, skim through
this whole document to get an idea of what to expect. While this document is
presented in chronological order, you can avoid many pitfalls as you’re building
the computer if you know where you’re heading.

To build this computer you will need some common pieces of electronic tools
and test equipment. The major tools you will need access to are an EPROM
programmer and a 15 W soldering iron with a small tip. The test equipment you
will need are a +5 VDC power supply, a voltmeter, a personal computer with an
RS-232 serial port, a terminal emulation program and possibly an oscilloscope.
Additionally, it would help to have access to the World Wide Web.

The following timeline depicts a minimum-time schedule required to
complete this project. If all goes well, you can probably finish this project in a
week or two. Keep in mind though that this estimate does not include the time
required to overcome learning how to build a computer or the time required to
debug the computer which can be two large variables in this schedule. Of
course, overcoming these obstacles embodies the whole purpose of this project.

Monday Order Parts.
Download Software.
Order Data Sheets.

Tuesday Buy parts from Radio Shack.

Wednesday Receive Mail Order Parts.

Thursday Program PAL and EPROM.
Lay out the board.

Friday Wire the computer.

Saturday Wire the computer.

Sunday Test the computer.

3.1 Ordering the Parts
Mail-order is the best way to obtain electronic parts. While it’s tempting to run
down to the local electronics store and buy the parts off the shelf, you will
usually have trouble getting exactly what you need and wind up paying a lot
extra. With mail-order, you can almost always get exactly what you want at a
good price. All you need is a credit card and a telephone. Begin signing up on
the mailing lists of mail-order houses which sell electronic parts. This is easy
to do since every major mail-order house has a toll-free number as well as a
World Wide Web (WWW) site.

7

There are three parts listings given for this project, one for each parts
supplier. Generally, the fewer orders you make, the less overall shipping
charges you have to pay. It turns out that JDR Microdevices, Digi-Key and
Radio Shack have all of the parts that we’ll need. JDR Microdevices and
Digi-Key are mail-order houses, while Radio Shack is usually just a car ride
away.

Keep in mind that the parts list, and the whole design for that matter,
isn’t etched in stone. If you find a better supplier, come up with better parts, or
just want to save money, many of these parts can be substituted or even left out
entirely. Look over the part list carefully and check the items with the mail-
order catalogs. Try to understand what you’re buying.

If you find that a particular part isn’t in stock, it would be best to substitute
the part for another or order it somewhere else, as opposed to backordering the
part. Backorders can mean waiting weeks or possibly not getting the part a t
all, not to mention extra shipping charges. Be sure to keep the mail-order
catalog handy when you place your order in case you need to make a quick
substitution. Backorders shouldn’t be a problem for this project since most of the
parts are pretty commonplace.

If you choose, you can order all of the mail-order parts over the Internet.
Simply go to the respective WWW site and follow the ordering procedure. One
advantage to ordering parts over the Internet is that you can instantaneously
check the stock for each item as you go along. Also, you won’t feel rushed in
case you need to change your mind while ordering.

If you place your order early in the day, the parts suppliers will usually
ship the order the same day. As a result, the shipping method you choose will
determine the amount of time it will take to get the parts. Second-day air-
mail is usually a good buy. With second-day air-mail, the parts will arrive
within two business days of when they are shipped.

The prices and part numbers which are listed below reflect what was
available at the time of printing. As time progresses, the prices, availability
and part numbers will change. If you can't find a part in the recent catalogs,
find substitutes using the master parts list in Appendix 1.

The parts marked (*) are ones you might already have in your parts box. I f
you don't have them, go ahead and order them since you're getting a pretty
good deal from the mail-order houses. The parts marked (†) are optional and
can be substituted for something less exotic.

Digi-Key, 1-800-344-4539 (http://www.digikey.com)

Part No. Part Description
Unit
Price

Total
Price

1 AE1020-ND * Male-Female DB-9 Cable (2m) 5.35 5.35
1 ED1609-ND * 2 Position Terminal Block 0.37 0.37
1 ED4648-ND 48-Pin DIP WW Socket 3-Level 5.49 5.49
1 MN13811-Q-ND 3.8V O.D. Low Voltage Detector 0.85 0.85
1 EG1403-ND * SPST Momentary Square Yellow Pushbutton 0.98 0.98
1 923252-ND † 6.5" Solderless Breadboard w/Power Busses 19.25 19.25
1 923292-ND † 54 Point Terminal Strip with Solder Tails 9.65 9.65
1 L20165-ND * PC Board Mount Green LED With Holder 0.67 0.67

Sub Total $42.61

http://www.digikey.com

8 Yerem: Build Your Own MC68HC11 Computer Trainer

JDR Microdevices, 1-800-538-5000 (http://www.jdr.com)

Part No. Part Description
Unit
Price

Total
Price

Integrated Circuits
1 74HC245 Octal Tri-State Transceiver 0.39 0.39
1 74HC373 Octal Tri-State D Type Latch 0.45 0.45
1 MAX232CPE +5V Powered Dual RS-232 Trans./Rcvr. 1.39 1.39
1 68HC11A1P 8-bit HCMOS MCU 11.99 11.99
1 68B21 2 PIA 2 MHz 2.89 2.89
2 27C64A-200 8kx8 250ns EPROM 2.89 5.78
1 HM62256LP-10 32kx8 100ns Static RAM 1.99 1.99
1 16L8B PAL 16L8B 15ns 1.49 1.49

Discrete Components
1 8.0MHZ 8.0 MHz Crystal 1.39 1.39
1 RPS7-4.7K † 4.7 kΩ SIP 7 Resistor Network 0.19 0.19
10 R10.0M * 10 MΩ 1/4 W Resistor 0.05 0.50
10 R330 * 330 Ω 1/4 W Resistor 0.05 0.50
1 100R16 * 100 µF 16V Radial Electrolytic Capacitor 0.14 0.14
4 10R63 * 10 µF 63V Radial Electrolytic Capacitor 0.10 0.40
2 22PF * 22 pF Ceramic Capacitor 0.05 0.10
9 T.1-35 * 0.1 µF Tantalum Capacitor 0.15 1.35

Connectors
1 DB09SRS Right Angle PC Mount Female DB-9 Connector 0.59 0.59

IC Sockets
1 16 PIN WW 16-Pin DIP WW Socket 3-Level 0.79 0.79
3 20 PIN WW 20-Pin DIP WW Socket 3-Level 1.09 3.27
3 28 PIN WW 28-Pin DIP WW Socket 3-Level 1.49 4.47
1 40 PIN WW 40-Pin DIP WW Socket 3-Level 1.69 1.69

Headers
10 JUMPER-KT-10 † Shorting Jumper Block 0.99 0.99
1 HDR-40R † 1x40 Snappable Header with Right Angle Pins 0.89 0.89

Sub Total $43.63

Radio Shack (http://www.radioshack.com)

Part No. Part Description
Unit
Price

Total
Price

1 278-503 50' 30-Gauge Blue Wrapping Wire 2.79 2.79
1 276-1396 6"x8” IC-Spacing Perfboard 3.49 3.49
1 276-1570 * Wire-Wrapping Tool 7.49 7.49

Sub Total $13.77

3.2 Downloading the Software
While you are waiting for the parts to arrive, you can download the software
required for the computer from the Internet. Motorola has an FTP site which
has lots of free software that can be used for developing computers based on
Motorola microprocessors. For this project, the one important piece of software
required is the BUFFALO monitor program. BUFFALO is a stand alone
program written for operating a simple MC68HC11 computer through a dumb
terminal. We will put the BUFFALO program in an 8 kB boot EPROM so tha t
the computer will be ready for work at power up.

Additionally, there are two other pieces of software that would be useful
for this project. The AS11 program is a freeware cross-assembler provided by
Motorola. It’s invaluable for writing software for the MC68HC11. Also, the
FTP site has a copy of BASIC11, a stand alone BASIC interpreter for the
MC68HC11. The interpreter is fairly complete and fits inside of an 8 kB ROM.

The Motorola FTP site is located at:
http://www.mot.com/pub/SPS/MCU/

http://www.jdr.com
http://www.radioshack.com
http://www.mot.com/pub/SPS/MCU/

9

Alternatively, the University of Alberta Motorola Archive is a mirror site:
ftp://nyquist.ee.ualberta.ca/pub/motorola/

Download the BUFFALO Monitor - You only need the “.s19” file, but if you
want an up-to-date source listing for BUFFALO, then download the “.zip” file.

Path Size Date Comments
/mon/buf34.s19 19182 03/30/1994 BUFFALO 3.4 monitor for the

HC11.
/mon/buf34.zip 116221 03/02/1995 BUFFALO 3.4 monitor for the

HC11 with source code.

Download a cross-assembler - AS11 is a freeware cross-assembler for the
MC68HC11. It has been ported to many platforms since Motorola has
distributed the C source code for the assembler.

Path Size Date Comments
/ibm/as11.exe 18870 03/30/1994 Cross assembler for the

MC68HC11.
/ibm/as11new.exe 19584 03/30/1994 Improved version of as11.
/mac/XASMHC11.MAC 49024 03/30/1994 This is as11 ported to the

Macintosh by Georgia Tech.
Use MacBinary to download
this application.

While you’re downloading software you might want to get a copy of
PALASM. PALASM is a freeware program from American Micro Devices
(AMD) which you can use to compile the program for the Chip Select PAL.

The AMD WWW site is located at:
http://www.vantis.com/software/software.html

Download PALASM - When you reach the web site, follow the registration
procedure for downloading PALASM.

3.3 Ordering the Data Sheets
Component manufacturers publish data books and data sheets for all of their
components. Usually the literature and the phone call are free. Additionally,
most major manufacturers have World Wide Web sites which have the
literature in electronic form.

For this project, it would be a good idea to get the data sheets for some of
the components. Particularly, the data sheets for the MC68HC11 and the
MC6821 are indispensable.

You have two options for ordering the literature. You can either call up
Motorola literature group or you can access their WWW site. I would
recommend using the WWW site since it is as simple as filling out a form. If you
choose to go to Motorola’s web site, be sure to browse around to see the other
services they provide.

Here is the phone number for the Motorola Literature Distribution:
1-800-441-2447

ftp://nyquist.ee.ualberta.ca/pub/motorola/
http://www.mot.com/pub/SPS/MCU/mon/buf34.s19
http://www.mot.com/pub/SPS/MCU/mon/buf34.zip
http://www.mot.com/pub/SPS/MCU/ibm/as11.exe
http://www.mot.com/pub/SPS/MCU/ibm/as11new.exe
http://www.mot.com/pub/SPS/MCU/mac/XASMHC11.MAC
http://www.vantis.com/software/software2.html

10 Yerem: Build Your Own MC68HC11 Computer Trainer

While here is their WWW address:
http://mot2.mot-sps.com/home/lit_ord.html

Here are the part numbers for the data books to order:

MC68HC11A8/D MC68HC11A8 Technical Data Book
MC6821/D MC6821 Peripheral Interface Adapter Data Sheet
M68HC11EVB/D1 M68HC11EVB Evaluation Board User's Manual

3.4 Construction
Now that the parts have arrived, it is time to assemble your computer. We
will start by programming the boot EPROM and the chip select PAL. Following
will be a tutorial on wire-wrapping. Finally, we will lay out the components on
the board and do the actual wiring.

3.4.1 Programming the EPROMs
The boot ROM will give our computer a program to run every time the computer
is powered up. This is possible since the boot ROM provides non-volatile
storage (it doesn’t lose its memory when the power is turned off).

This step will require the use of an EPROM programmer. This might be
troublesome if you don’t have access to one. Since an EPROM programmer can be
an expensive item, you might want to get help from someone who owns one. The
Electrical Engineering department at your local university would have one as
well as your local electronics trade school. It is also possible that your local
electronics repair shop would have one that you can use. If these options aren’t
available to you or if you think you will be building more computers in the
future, you might want to invest in your own personal EPROM programmer.
Most electronics supply stores carry them. For this project, be sure that the
programmer you use is able to program both EPROMs and PALs.

You can erase an EPROM by using an EPROM eraser which contains an
ultraviolet lamp. The ultraviolet light is shined through the window on the
chip. Never look directly at an ultraviolet lamp as it can cause serious eye
damage.

Programming the Buffalo EPROM
1. Load the “buf34.s19” file into the EPROM programmer. You might

have to tell it that the file is in Motorola Hex format. Specify a base
address of $E000.

http://mot2.mot-sps.com/home/lit_ord.html

11

2. Program and verify the BUFFALO EPROM.

Programming the Test EPROM
1. Store the test program in Listing 1 into a text file.

Listing 1: The test program listing.

**** test.as ****
RegBase equ $1000
PORTA equ $00
TCTL1 equ $20
TFLG2 equ $25
PACTL equ $26
PIA_PRA equ $A000
PIA_CRA equ $A001
PIA_PRB equ $A002
PIA_CRB equ $A003

org $E000
start ldx #RegBase

clr PIA_CRA Initialize PIA.
clr PIA_CRB
ldaa #$FF
staa PIA_PRA
staa PIA_PRB
ldaa #$04
staa PIA_CRA
staa PIA_CRB
ldaa #$80
staa PACTL,x
clr TCTL1,x
ldab #$38 Initialize test pattern.
clc

delay ldy #7 Wait 0.23 seconds by counting seven timer overflows.
loop brclr TFLG2,x $80 loop Wait for timer overflow.

ldaa #$80
staa TFLG2,x Clear timer overflow flag.
dey
bne loop
rolb Rotate test pattern.
stab PORTA,x Write test pattern.
stab PIA_PRA
stab PIA_PRB
bra delay

org $FFFE
fdb start

2. Assemble the program using the AS11 assembler.

3. Load the resulting .s19 file into the EPROM programmer as before
specifying a base address of $E000.

4. Program and verify the test EPROM.

3.4.2 Programming the Chip Select PAL
The Chip Select PAL (Programmable Array Logic) chip is used to perform the
logic which “glues” the computer together. By using a PAL, we reduce the

12 Yerem: Build Your Own MC68HC11 Computer Trainer

number of components by eliminating many discrete logic gates. The PAL can
provide much more complex designs than normally would be attempted with
discrete logic. Also, if the logic needs to change, a new chip can be programmed
replacing the old design.

Since all of the memory and I/O chips share the same data and address
busses, they need a way to know when they are being addressed. The PAL will
do this job by decoding the current value on the address bus and selecting the
appropriate chip. Additionally, the PAL gates the RAM and ROM chip select
signals with the E clock signal since the data bus isn’t ready until E is high.
Also, the ROM chip selects are gated with the R/*W line so that the ROM is
only selected during a read cycle.

Programming the PAL
1. Using a text editor, type in the program shown in Listing 2 and save i t

in a text file.

Listing 2: The program listing for the Chip Select PAL.

;---------------------------------- Declaration Segment ------------
TITLE EVB Address Decoder
PATTERN
REVISION
AUTHOR G. Yerem
COMPANY UTK
DATE 06/19/97
CHIP _CSPAL PAL16L8

;---------------------------------- PIN Declarations ---------------
PIN 1 A15 COMBINATORIAL ; INPUT
PIN 2 A14 COMBINATORIAL ; INPUT
PIN 3 A13 COMBINATORIAL ; INPUT
PIN 4 A12 COMBINATORIAL ; INPUT
PIN 5 A11 COMBINATORIAL ; INPUT
PIN 6 A10 COMBINATORIAL ; INPUT
PIN 7 RW_EN COMBINATORIAL ; INPUT
PIN 8 IO_EN COMBINATORIAL ; INPUT
PIN 9 RW COMBINATORIAL ; INPUT
PIN 10 GND ; GND
PIN 11 E COMBINATORIAL ; INPUT
PIN 12 /RAM_SEL COMBINATORIAL ; OUTPUT
PIN 13 /EXTRA_SEL COMBINATORIAL ; OUTPUT
PIN 14 /PIA1_SEL COMBINATORIAL ; OUTPUT
PIN 15 /PIA2_SEL COMBINATORIAL ; OUTPUT
PIN 16 /RDIO_SEL COMBINATORIAL ; OUTPUT
PIN 17 /WRIO_SEL COMBINATORIAL ; OUTPUT
PIN 18 /SPARE_SEL COMBINATORIAL ; OUTPUT
PIN 19 /BOOT_SEL COMBINATORIAL ; OUTPUT
PIN 20 VCC ; VCC

;----- Boolean Equation Segment. ----
EQUATIONS
RAM_SEL = (/A15)*E ; $0000 - $7FFF
EXTRA_SEL = (A15*/A14*/A13)*E*RW ; $8000 - $9FFF
PIA1_SEL = (A15*/A14* A13*/A12*/A11*/A10) ; $A000 - $A3FF
PIA2_SEL = (A15*/A14* A13*/A12*/A11* A10) ; $A400 - $A7FF
RDIO_SEL = (A15*/A14* A13*/A12* A11*/A10 + IO_EN)*(E* RW + RW_EN) ; $A800 - $ABFF
WRIO_SEL = (A15*/A14* A13*/A12* A11* A10 + IO_EN)*(E*/RW + RW_EN) ; $AC00 - $AFFF
SPARE_SEL = (A15* A14*/A13)*E*RW ; $C000 - $DFFF
BOOT_SEL = (A15* A14* A13)*E*RW ; $E000 - $FFFF

13

2. Using PALASM or a similar program, compile the PAL program to
generate a JEDEC file. (PALASM is a freeware program from AMD which runs
under DOS.)

3. Using an EPROM programmer, program the PAL using the JEDEC file.

You can test your PAL by placing it in a solderless breadboard and
examining the outputs for different input combinations.

3.4.3 Board Layout
The next step is to lay out the components on the board.

First place the sockets and discrete components on the perfboard. The scale
drawing in Appendix 2 offers a suggested layout. Keep in mind that the DIP
wire-wrap sockets have an indentation which marks pin 1 of the chip. The
indentation on the socket corresponds to the indentation on the chip itself.

Next label the underside of the board. This will prevent errors when you
are wiring the board. It can be very frustrating to finish wiring a project, only to
find out that you’ve wired the chips backwards. White adhesive correction
tape, which can be found at office supply stores, works good for this purpose.
Also, you can buy preprinted labels for wire-wrapping if you don’t want to make
the labels yourself. For this project, Appendix 4 has some pre-printed labels
that you can cut out and glue to the board.

Now remove the discrete components and carefully turn the board over. Cut
out the labels in Appendix 4 and glue them underneath the appropriate sockets.
A knife and tweezers are helpful for placing the labels. Also, double check to
make sure you have the orientations correct.

14 Yerem: Build Your Own MC68HC11 Computer Trainer

3.4.4 How to Wire Wrap
Wire wrapping involves spinning 30-gauge wire onto special sockets with
rectangular posts in order to make point-to-point electrical connections. Does
that sound simple? Well, actually it is. Wire wrap connections are very
reliable and well suited for digital signals.

Some tools you might find useful for wire-wrapping are: tweezers, a wire-
wrapping tool, an X-Acto knife, diagonal cutters, needle nose pliers, and a
wrapping wire dispenser.

Here is a close-up picture of the wire-wrapping tool that Radio Shack
sells. It’s a manual tool which is very reliable. Also, hidden in the handle you
will find a handy wire stripper.

If you shop around you will find that there are many varieties of wire-
wrapping tools available. Some tools will dispense, strip and cut the wire
automatically for you and some are also motorized to spin the wire for you. I
personally use a manual tool because it is inexpensive and yields very reliable
results.

Here is a step-by-step description of wire-wrapping:

1. Strip off about a half-inch of insulation
from the end of the spool of wire.

2. Measure the point-to-point length
needed, keeping in mind an extra half-
inch plus some slop.

15

3. Mark the length with your fingernail. 4. Cut the wire.

5. Strip off a half-inch of insulation from
the other end using some needle nose
pliers.

6. Place the wire in the special slot in the
tool with about an eighth-inch of
insulation inside of the tool. Bend the
wire at a right angle at the tip of the tool.

7. Place the tool over the first post. With
the forefinger of your free hand, hold the
socket to the board and with your
thumb, hold the wire taught. Turn the
tool in one direction until all of the bare
wire is spun onto the post.
Now, while holding the socket, give the
turns a push with the tool. This will
eliminate the gap between the turns and
the board, mechanically holding the
socket firmly to the board.

8. Place the free end of the wire into the
tool the same way as before, with about
an eighth-inch of insulation inside of the
tool.

16 Yerem: Build Your Own MC68HC11 Computer Trainer

9. Place the tool over the destination post
and pull the wire taught with some
pliers. Be careful not to break the wire.

10. Spin the wire onto the destination post
and give it a press when your done.

11. This is the end result.

To correct a mistake, you can spin the tool in the opposite direction which
removes the wire. Be careful though not to inadvertently unwrap any wires
underneath.

Here are some handy tips to follow when wire-wrapping:

• There should be about 1 turn of insulation and about 4 turns of bare wire
wrapped around a post.

• While spinning wires onto a post, be sure not to oppose the direction of wires
already tied there.

• Try not to tie too many wires to a single post. Four connections to a single
post is about the limit while two connections is the average.

• A nice straight connection usually works best. It may take a few trys to
thread the wire to its destination. Tweezers help for doing this.

• Try not to force the tool when you are spinning it because the wire may
break and you will have to start over. With a little practice, you will find
that a light touch works best.

• When wiring the discrete components, cut the leads to about 1/2 inch long.
• Be careful not to twist and break the leads of a discrete component.
• Do not solder the chip connections! Soldered wire-wrap connections are

impossible to remove if a mistake has to be corrected or if a repair is
needed. The wire-wrap connection alone is strong enough to last 10-20
years.

• Do not cut the wire wrapping pins if you can help it. Again, corrections and
modifications are easier to make if you leave the posts intact.

17

• Do solder the discrete component connections. Discrete component
connections usually require some soldering since the leads are rounded,
unlike the rectangular wire-wrapping posts. As a result, there are no edges
for a wire to grip on to. A 15 watt soldering iron with a small tip does a
good job in this case.

• Don’t ruin your eyes. Use a magnifying glass and good lighting when you
work

Wire-wrapping can be a juggling act at times, but you will get used to it and
come across many tricks and shortcuts as you progress.

3.4.5 Wiring the Board
Now it’s time to do some wiring. While you are wiring the computer, you will
have to refer to the schematic diagram in Appendix 3. The schematic diagram
depicts all of the connections that must be made. It will be helpful to mark the
connections on the schematic with a red pencil as you wire them.

Before wiring, cut the leads of the discrete components to be 1/2 inch long.

Here is a step-by-step description of the wiring:

1. Wire the Bypass Capacitors - Wire a 0.1µF tantalum bypass capacitor to
the power connections of all nine chips. The power connections for each chip
are listed in the table on the schematic diagram. The bypass capacitors
will help filter switching transients from the power lines. Since the
tantalum capacitors are polarized, be sure to wire the plus lead to the Vcc
connection and the other lead to ground.

When you spin the wire around each lead, be extra careful not to twist and
break the lead off. Also, the connection to the capacitor won’t be as good as
the connection to the chip since the leads on the capacitor are round with no
edges for the wire to grip on to. When we’re done with the whole computer
and see it working, we can solder the capacitor connections for extra

18 Yerem: Build Your Own MC68HC11 Computer Trainer

reliability. For now though, don’t solder anything just in case you need to
make corrections.

2. Wire the Internal Connections - The internal connections in this case are the
leads which are grounded or pulled high. The 74HC373, the PAL16L8, the
27C64s, the HM62256 and the MAX232 all have internal connections.

3. Wire the Multiplexed Address/Data Bus - These are the lines labeled AD0
through AD7 which connect the MC68HC11 to the 74HC245 and 74HC373.

4. Wire the Data Bus - These are the lines labeled D0 through D7. The Data
Bus connects the 74HC373 to the 27C64s the HM62256 and the MC68B21.

5. Wire the Address Bus - These are the lines labeled A0 through A15. The
lines A0 through A7 originate with the 74HC373 and go to the 27C64s the
HM62256 and the MC68B21, while the lines A8 through A15 originate
with the MC68HC11 and go to the 27C64s the HM62256 and the PAL16L8.

19

6. Wire the Control Bus - The signals in the control bus include *RESET, AS, E,
R/*W, *BOOT, *SPARE, *RAM and *PIA1.

7. Wire the 4.7kΩ Resistor Pack - These connections go to the MC68HC11. Be
careful, the pins are short and fragile. We’ll solder the connections later.
The pin with the dot above it is the common which goes to Vcc. You can use
tweezers to manually wrap the wires to the resistor pack. Alternately, you
can wire the pins first, then thread the wires through the board. In tha t
case, you may need to drill the holes out a little.

8. Wire the Reset Circuit - Use a resistor in the 4.7kΩ resistor pack for the
pull-up resistor. A bead of solder on each pin of the push-button will
mechanically secure it to the board. Be careful not to burn any of the wires.

9. Wire the Crystal Connections - This includes wiring Y1, R2, C11 and C12 to
the MC68HC11.

20 Yerem: Build Your Own MC68HC11 Computer Trainer

10. Wire the J4 jumper - Cut off a 3x1 section of the header connector. Unbend
the right-angle pins so that they are straight. This will give us some extra
long pins to wire wrap to.

11. Wire the MAX232 - Wire the capacitors to the MAX232 and wire the
MAX232 to the micro.

12. Drill and Cut the Holes for the DB-9 Connector - Since the row of five pins
on the connector aren’t aligned with the perfboard, we need to cut a slot for
them. Also, drill out the two mounting holes.

13. Mount and Wire the DB-9 Connector - Connect the DCD, DSR, CTS and DTR
lines together. Also, prewire the TxD, RxD and GND lines with some wire
of an appropriate length. Now thread the three loose wires through the
perfboard, screw the DB-9 connector to the perfboard and wire the connector
to the MAX232.

21

14. Prepare the Wireless Breadboard - Cut off two small rectangles of the foam
backing of the wireless breadboard behind the top and bottom power strips.
Four metal strips should be exposed, two on the top and two on the bottom.
We will use these openings to wire power directly to the bread board. The
photograph in Step 15 shows the recommended orientation for the holes.

One thing to keep in mind is that the power strips on the breadboard are
actually divided in half. In other words, the strips don’t connect all the
way across. An easy solution is to put small jumper wires in the top of the
board.

15. Mount the Breadboard and Terminal Strip - Drill all the mounting holes for
the solderless breadboard and the terminal strip. Also, drill and cut the
two holes for the power connections to the breadboard. Screw on the
breadboard and terminal strip.

16. Wire the Terminal Strip - The connections to the terminal strip are
arbitrary. A recommended series of signals to bring out is listed on the label
in Appendix 4.

22 Yerem: Build Your Own MC68HC11 Computer Trainer

17. Wire the Power Connections , Power Connector and LED - Use heavier
gauge wire for the power busses. Wire the power busses on the breadboard.
You might want to paint the power busses on the breadboard so that you
remember the polarity.

The final step in construction is to solder the discrete components. Using a
15W iron with a small tip, place a small bead of solder on the discrete
component connections. After soldering the discrete components, you can cut
their leads shorter. Again, do not cut or solder the chip sockets. It’s a good
idea that you wait before doing any soldering until after the testing stage when
you are sure that the computer is working.

Additionally, it would be a good idea to add some standoffs to the corners
of the board. Machine screws work good for this purpose. Alternatively, you
can mount it in a box to protect the wiring. You might want to hold off on
mounting the computer until after the computer is tested out though.

Wow! That was a lot of work! Now it’s time to test the computer out.

23

4 Testing the Computer
Now let’s test the computer and see if it works. The testing stage is an
opportunity where you can learn the most, so try not to get frustrated i f
everything doesn’t work the first time. Every problem that you face can be
conquered with a little patience and the success will be rewarding and
educational. Turn on your detective skills. The process of elimination will
illuminate many hidden problems.

While you are testing, check for obvious errors. For example, go through
and double check your connections with a continuity tester. Sometimes a broken
or shorted connection is not visible to the naked eye. Remember, a single
miswired connection can have bad effects. Here is a common sense checklist to
keep in mind during the testing:

• Is the power on? Check the power light.
• Is the power supply set to +5 VDC? Be careful not to supply a high voltage

to the computer because that will damage the chips. On the other hand, i f
the power supply voltage is too low (<4 V) the LVI chip will activate
holding the computer in a Reset state.

• Are any chips loose? Check to make certain that each chip is firmly
plugged in.

• Is a pin bent under? Sometimes a chip’s pin can be bent underneath when
inserting the chip into its socket causing the pin not to make contact.

• Is a chip plugged in backwards or wired backwards?

Here is a step-by-step procedure for testing the computer:

1. Check for shorts in the power buss with a continuity meter. If you use an
ohmmeter to check for continuity, keep in mind that the filter capacitors
will charge up giving you a changing reading. Now hook up a +5 VDC
power supply to the computer. With no chips installed, power the
computer and check each socket for power with a voltmeter. Make certain
that you read +5 VDC at the correct polarity.

Vcc

330 Ω
PA7

PA6

PA5

PA4

PA3

2. Turn off the power and plug in the MC68HC11, the Test ROM, the 74HC373,
the 74HC245 and the PAL16L8. The Test ROM should be plugged into the

24 Yerem: Build Your Own MC68HC11 Computer Trainer

Boot ROM socket. Also, wire five LEDs to PA3 through PA7 of the
MC68HC11.

It’s time to perform a smoke test. A smoke test is simply a test where you
turn on the project and check for smoke. After you turn on the computer, feel
each chip to make sure that none are getting hot. This could indicate a
backwards power connection. Keep one hand on the power switch and be
ready to turn off the power at the first sign of trouble.

Now check the LEDs. Are they blinking? Is the program running? If not,
it’s time to do some troubleshooting.

• Is the EPROM programmed properly?
• Is the PAL programmed properly?
• Is the crystal oscillator running? Check the E clock signal on an oscilloscope

and look for a 2 MHz square wave.
• Is the Reset line high? Try pressing the Reset button and see if the program

starts running.

3. Don’t disconnect the LEDs yet. Turn off the computer and plug in the
MAX232 chip. Power up the computer again and perform another smoke
test. Make sure that the MAX232 is not getting hot. Using a voltmeter,
check pin 2 of the MAX232, it should be +10 VDC with respect to ground.
Now check pin 6, it should be -10 VDC with respect to ground. Also, make
certain that the test program is still running.

4. For this step you need a serial terminal program for your personal computer.
Turn off the project, remove the Test ROM and plug the BUFFALO ROM in
its place (don’t plug the ROM in backwards). Also, make certain that the
J4 jumper is grounded.

Hook up the computer to the serial port on your personal computer. Set the
serial terminal program to 9600 Baud, 8 Data Bits, No Parity, 1 Stop B i t
and No Handshaking.

25

Now power up the computer and perform another smoke test. Did you get a
BUFFALO prompt similar to the one below? Try hitting the Return key on
your personal computer.

BUFFALO 3.4 (ext) - Bit User Fast Friendly Aid to Logical Operation

If nothing happened then:

• Is the DB-9 connector wired properly?
• Do you see a data transmission every time you hit the Reset switch? You

can check for this by placing an oscilloscope on the transmit pins, 10 and 7 of
the MAX232 and pin 43 of the MC68HC11.

• Did you plug in the right ROM (BUFFALO)?
• Are you connected to the correct serial port on your personal computer?
• Do you have a good connection between the two computers?

5. Turn off the computer and plug the Test ROM into the Extra ROM socket.
Turn the computer back on and perform another smoke test. Now from
BUFFALO type: go C000 [ENTER] . Are the LEDs blinking? To stop the
program press the Reset button. Now, try disassembling the test program.
Type: asm C000 [ENTER] . Hit [ENTER] to advance to the next line. To
exit the disassembler type: [Control-A] .

6. Turn off the computer and plug in the HM62256. Turn the computer on and
perform the smoke test as usual. Using the BUFFALO Block Fill command,
try to write to locations in the RAM. Type: bf 7000 7100 AA [ENTER] .
Now type: md 7000 [ENTER] . Were you successful writing to the RAM?
Also, try running the test program. Is it still working?

26 Yerem: Build Your Own MC68HC11 Computer Trainer

Vcc

330 Ω
PPA7

PPA6

PPA5

PPA4

PPA3

PPA2

PPA1

PPA0

7. Turn off the computer and plug in the MC68B21. Wire eight LEDs to the
PIA. Perform the usual smoke test. Run the test program. Are the LEDs
blinking?

Congratulations! You have just built your own working computer from
scratch.

27

5 Using the Computer
Now that the computer is finished you can start putting it to use. This section
will describe what is required to program your new computer.

In addition to reading this section, read through the MC68HC11A1 data
book, the MC6821 data sheet and the M68HC11EVB Evaluation Board user’s
manual. These documents cover a lot of information not dealt with here.

Our computer was designed to be similar to the Motorola MC68HC11
Evaluation Board (EVB) which you may be familiar with. Nonetheless, our
board has many differences from the EVB, so keep this in mind when you are
programming. This section will cover what those differences are.

5.1 Programming
When you are programming your computer, the most important thing to be
aware of is the memory map. The Chip Select PAL divides up the 64 k B
memory space among the external memory and peripherals while the
MC68HC11 handles the addressing of its internal devices. When there is an
address space conflict between the internal and external devices, the internal
devices have priority. In the memory map drawn below, you can see that the
internal RAM and Control Registers overlap the 32 kB of external RAM.

5

10

15

20

25

30

35

40

45

50

PD2
PD3
PD4
PD5
PE0
PE1
PE2
PE3
VRL
VRH
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
PIA2
D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
IRQ
XIRQ

RESET
R/*W

E
PPB0
PPB1
PPB2
PPB3
PPB4
PPB5
PPB6
PPB7
CB1
CB2

PPA0
PPA1
PPA2
PPA3
PPA4
PPA5
PPA6
PPA7
CA1
CA2

Internal RAM
0000-00FF

Internal Registers
1000-103F

Main RAM

0000-7FFF

Extra ROM

8000-9FFF

PIA 1, A000-A3FF RD IO, A800-ABFF
PIA 2, A400-A7FF WR IO, AC00-AFFF

Internal EEPROM

B600-B7FF

Spare ROM

C000-DFFF

Boot ROM

E000-FFFF

Use this memory map to plan the organization of any hardware and
software that you add to the computer.

The MC68HC11 has a large number of on-chip peripherals to take
advantage of. The MC68HC11 data book describes how to program the on-chip
peripherals.

28 Yerem: Build Your Own MC68HC11 Computer Trainer

5.1.1 Using BUFFALO
The BUFFALO monitor program will allow you to do most of your program
development. In BUFFALO you can view and modify memory and registers,
assemble and disassemble programs, and perform advanced debugging. The
most important feature of BUFFALO is its Load command. It allows you to
download Motorola Hex (.s19) files to the computer’s RAM through the serial
port. Here is a procedure for using BUFFALO in your program development:

1. Write the source code.
2. Give the source code a base address somewhere in the RAM’s address

space between $0000 - $7FFF (watch out for the MC68HC11’s Control
Registers).

3. Cross-compile your program as an .s19 file.
4. At the BUFFALO prompt, type: load t [ENTER]. Now BUFFALO

will wait to receive a .s19 byte stream over the serial port. Use your
terminal emulator program to send the .s19 text file to BUFFALO.

5. If everything goes well, BUFFALO will print the message: done and
provide the command prompt again.

6. You can now run your program by using the go command.

If you forget a command in BUFFALO, typing: help [ENTER] will display
the list of commands. The EVB manual has detailed descriptions of the other
BUFFALO commands.

5.1.2 Programming Your Own ROMs
You can write your program to fit in a boot ROM. First you have to place the
program in the space between $E000 - $FFFF and place a jump vector to your
program in the address $FFFE. When your new ROM is programmed you must
physically remove the BUFFALO ROM and replace it with your new ROM.
Subsequently, your new program will run every time the computer is turned on.

Alternately, you can use the Spare ROM socket for your program. In this
case you must place your program within the space $C000 - $DFFF. This time
though, you won’t be able to modify the Reset jump vector to jump to your
program. You can either run your program from the BUFFALO prompt, or pull
the J4 jumper high to tell BUFFALO to jump to the first location of the
MC68HC11’s internal EEPROM at $B600. Then you simply need to put a jump
instruction at $B600 to call your new program. Keep in mind that the Spare
ROM socket is for your use and can be left empty most of the time.

Most of the time though, you will be loading your program into the
computer’s RAM and executing the program from there. The advantage of this
is that you will be able to rapidly change your program and try it out. The
disadvantage is that the program will disappear when the computer is turned
off.

5.2 Interfacing
In order to keep the design practical certain built-in resources of the MC68HC11
aren’t available on our computer. For example, in this design the pins PD0 and
PD1 are used for the serial port and as a result aren’t readily available for use
as digital I/O. Also, since the BUFFALO monitor program uses PE0 as an input

29

for the J4 jumper, PE0 shouldn’t be used for other purposes. Additionally, lines
PE4 through PE7 of Port E aren’t pinned out on the MC68HC11A1P version used
in this design. This is because the DIP (Dual Inline Package) version of the
MC68HC11A1 used here doesn’t have enough pins to accommodate all of Port E.
The pins PE4 through PE7 are only available on the PLCC (Plastic Leaded
Chip Carrier) version. The PLCC version wasn’t used for this project because i t
would have been harder to wire by hand. Finally, Port B, Port C, STRA and
STRB are unavailable because we are operating the MC68HC11 in expanded
mode as opposed to single chip mode. Expanded mode is what allows us to
connect external memory like the HM62256 RAM chip and the 27C64 EPROM
chip to the microprocessor.

Despite these limitations, expanded mode allows us to add as much I/O to
the computer as we require, albeit with a few extra chips required. In this
design, the MC68B21 chip augments the available digital I/O. The following
sections will describe how to use the MC68B21 and how add even more digital
I/O to the design.

5.2.1 How to use the MC6821
The MC6821 Peripheral Interface Adapter (PIA) chip provides bi-directional
digital I/O for the 6800 family of microprocessors with a minimum of fuss. The
MC6821 has two bi-directional 8-bit data ports along with two handshaking
control lines for each port. The handshaking lines allow each port to be used as
parallel communication ports.

PA2

PA0
PA1

PA3

PA4
PA5
PA6
PA7

CA1
CA2

RS0
RS1

E

R/*W
*RESET

*CS2

26
27
28
29

30
31

35
36

23
25
21
34

39
40

9
8

7
6
5
4
3

2

17
16

15
14
13
12
11

10

A1
A0

E
R/*W

*RESET

CS1

CS0

Vcc

22
24

32
33

(U2)

MC68B21

PPA7
PPA6
PPA5
PPA4
PPA3

PPA2
PPA1
PPA0

CA2
CA1

D0
D1
D2
D3

D4
D5
D6
D7

D0

D1
D2
D3
D4
D5

D6
D7

PPB0
PPB1
PPB2

PPB3
PPB4
PPB5
PPB6

PPB7

19
18 CB1

CB2

PB0
PB1
PB2
PB3

PB4
PB5
PB6
PB7

CB1
CB2

*PIA1 ($A000)

Internally, the MC6821 has six registers for operating the chip, three
registers for Port A and three registers for Port B. When RS1=0 the Port A
register set is selected and when RS1=1 the Port B registers are selected. When
RS0=1 the Control Register for the given port is selected. When RS0=0 the
register that is accessed depends on bit 2, the DDR Access Bit, of the Control
Register. If the DDR Access Bit is 0, the Data Direction Register is selected. I f
the DDR Access Bit is 1, the Peripheral I/O Register is selected.

The MC6821 Control Register
b7 b6 b5 b4 b3 b2 b1 b0

IRQ A(B) 1
Flag

IRQ A(B) 2
Flag

CA2 (CB2)
Control

DDR
Access

CA1 (CB1)
Control

30 Yerem: Build Your Own MC68HC11 Computer Trainer

The Data Direction Register for each port allows any of the lines on a port
to be configured as inputs or outputs. A zero bit will configure a line as an input
while a one bit will configure the line as an output. Similarly, the Peripheral
I/O Register allows you to read from and write to the I/O ports.

A simple procedure for programming a port on the MC6821 is to:

1. Set the DDR Access Bit in the Control Register to 0.
2. Program the Data Direction Register.
3. Set the DDR Access Bit in the Control Register to 1.
4. Access the Peripheral I/O Register to read and write the I/O port.

This procedure applies for both Port A and Port B. Once you have
programmed the Data Direction Register, you probably will want to leave the
DDR Access Bit set to 1 for the rest of the program.

Here is a code snippet which demonstrates how to program the MC6821:

clr $A001 Set the DDRA Access Bit to 0.
clr $A003 Set the DDRB Access Bit to 0.
ldaa #FF
staa $A000 Set all bits on Port A to output.
ldaa #0F
staa $A002 Set upper bits of Port B to input and lower bits to output.
ldaa #04
staa $A001 Set the DDRA Access Bit to 1.
staa $A003 Set the DDRB Access Bit to 1.
ldaa #FF
staa $A000 Turn on all of the bits on Port A.
ldaa $A002 Read Port B.

Check the MC6821 data sheet to find out how to use its more advanced
features.

5.2.2 Adding a Basic Input Port
If you need digital inputs, the following one chip circuit will do the job,

3

12

13

17
15

4
2

8
6

11

74HC244

D1
D2
D3
D4
D5

D6
D7

*2G
*1G

D0

D
a

ta
 B

u
s

C
o

n
tr

o
l B

u
s

1Y1
1Y2
1Y3
1Y4

2Y1
2Y2
2Y3

2Y4

1A1
1A2
1A3
1A4

2A1
2A2
2A3

2A4

In0
In1
In2
In3

In4
In5
In6

In7

1
19 Vcc - Pin 20

Gnd - Pin 10

14
16

5
7
9

18

*RDIO ($A800)

To read the current state of the input lines simply perform a read from the
address $A800. The following line of assembly language will read the values
of the eight input lines into the A register:

ldaa $A800

This circuit can apply to other type of digital input that you would want to
connect to the computer, such as an analog-to-digital converter.

31

5.2.3 Adding a Basic Output Port
Here is a circuit similar to the previous one which provides eight digital
outputs to the computer,

14
13

8
7
4
3

18
17

15

19
16

5
2

9
6

8D

7D
6D
5D

4D
3D
2D
1D

8Q

7Q
6Q
5Q

4Q
3Q
2Q
1Q

12

74HC273

D1
D2
D3
D4
D5

D6
D7

*CLR
CLK

D0

*WRIO
*RESET

D
a

ta
 B

u
s

C
o

n
tr

o
l B

u
s

Out0
Out1
Out2
Out3

Out4
Out5
Out6

Out7

1
11

Vcc - Pin 20

Gnd - Pin 10

A simple write to the address $AC00 will change the states of the outputs.
The following two lines of assembly language show how to do this:

ldaa #AA
staa $AC00

You can of course use this circuit as an example for connecting other types of
output devices to the computer.

5.2.4 Adding More PIAs
If you require more sophisticated I/O, you can add more PIAs to the computer.
Simply plug the new PIA into the breadboard and wire it directly to the data
bus through the terminal strip. The only difference between the second PIA and
the original one is that the *CS2 pin of the new PIA is connected to the *PIA2
signal. This means that the base address of the new PIA begins at $A400
instead of $A000.

PA2

PA0
PA1

PA3
PA4
PA5
PA6
PA7

CA1
CA2

RS0
RS1

E
R/*W

*RESET

*CS2

26
27
28
29
30

31

35
36
23

25
21
34

39

40

9
8
7

6
5
4
3
2

17
16
15

14
13
12
11
10

A1
A0

E
R/*W

*RESET

CS1
CS0

Vcc

22
24

32
33

MC68B21

D0
D1
D2

D3
D4
D5
D6
D7

D0
D1
D2
D3
D4

D5
D6
D7

19

18

PB0
PB1
PB2

PB3
PB4
PB5
PB6
PB7

CB1
CB2

D
a

ta
 B

u
s

A
d

d
re

ss B
u

s

C
o

n
tro

l B
u

s

*PIA2 ($A400)

Vcc - Pin 20
Gnd - Pin 1

Now you have two extra bi-directional ports to work with. Similarly, you
can add as many PIAs to the computer as you need, keeping in mind that there
are only a finite number of unused address locations available.

32 Yerem: Build Your Own MC68HC11 Computer Trainer

6 Conclusion
I hope this was a great learning experience for you. When I built my first
computer it was pretty frustrating. Part of the frustration was due to the
complexity of the computer and part was due to errors in the instructions. I hope
that I’ve at least eliminated those two variables for you. Nonetheless, after a
lot of struggling I was able to get the computer working and learned a lot in the
process.

I’m sure you will get much use out of your new computer and I know there
will be more home-built computers in your future. Just think, ten years from now
you will look back fondly to this experience.

33

References
[1] Ciarcia, Steve and Burt Brown. “Using the Motorola MC68HC11.”

Circuit Cellar INK 18 (1990): 36-48.

[2] Farmer, Brian. “Planting Geraniums by Robot/Build an MC68HC11-
based 2-D Sensor.” Circuit Cellar INK 29 (1992): 12-21.

[3] Greenfield, Joseph D. The 68HC11 Microcontroller. Orlando, FL:
Saunders College Publishing, 1992.

[4] Motorola Inc. MC68HC11A8 Technical Data Book (Lit. No.
MC68HC11A8/D). Phoenix, AZ: Motorola Inc., 1991.

[5] Motorola Inc. MC6821 Peripheral Interface Adapter Data Sheet (Lit.
No. MC6821/D). Phoenix, AZ: Motorola Inc., 1985.

[6] Motorola Inc. M68HC11EVB Evaluation Board User’s Manual (Lit. No.
M68HC11EVB/D1). Phoenix, AZ: Motorola Inc., 1986.

[7] Olney, Bruce L. “Inexpensive 68HC11 Cross-development.” Circuit
Cellar INK 44 (1994): 22-29.

[8] Swiger, Frank and Joe Glover. “The FS-100 MC68HC11-Based Single-
Board Computer.” Circuit Cellar INK 24 (1991): 52-59.

34 Yerem: Build Your Own MC68HC11 Computer Trainer

Appendix 1 - Master Parts List
This is the master parts list for the prototype computer that was built. The
quantity, manufacturer, manufacturer part number and general description is
shown. Specific manufacturers aren't listed for easy to find generic parts.

Part Description Part No. Manufacturer
1 U1 8-bit HCMOS MCU MC68HC11A1P Motorola
1 U2 PIA 2 MHz MC68B21 Motorola
1 U3 Octal Tri-State D Type Latch 74HC373
1 U4 Octal Tri-State Transceiver 74HC245
1 U5 PAL 16L8B 15ns 16L8B
2 U6, U7 8kx8 ≤250ns EPROM 27C64-250
1 U8 32kx8 ≤250ns Static RAM HM62256LP-10
1 U9 +5V Powered Dual RS-232 Trans./Rcvr. MAX232CPE Maxim
1 U10 3.8V O.D. Low Voltage Detector MN13811-Q Panasonic

1 Y1 8.0 MHz Crystal
1 RP1 4.7 kΩ SIP 7 Resistor Network
1 R1 330 Ω 1/4 W Resistor
1 R2 10 MΩ 1/4 W Resistor
1 C1 100 µF Radial Electrolytic Capacitor
4 C13-C16 10 µF Radial Electrolytic Capacitor
2 C11, C12 22 pF Ceramic Capacitor
9 C2-C9 0.1 µF Tantalum Capacitor

1 Right Angle PC Mount Female DB-9 Connector

1 J4 Shorting Jumper Block
1 J4 1x3 WW Header Pins

1 16-Pin DIP WW Socket 3-Level
3 20-Pin DIP WW Socket 3-Level
3 28-Pin DIP WW Socket 3-Level
1 40-Pin DIP WW Socket 3-Level
1 48-Pin DIP WW Socket 3-Level 123-93-648-41-001 Mill-Max

1 LED1 PC Board Mount Green LED With Holder 5381H5 Industrial Devices, Inc.
1 SPST Momentary Square Yellow Pushbutton 520-01-2 E-Switch
1 2 Position Terminal Block ED1609 On-Shore Technology, Inc.
1 6"x8” IC-Spacing Perfboard 276-1396 Radio Shack
1 6.5" Solderless Breadboard w/Power Busses 923252 3M
1 54 Point Terminal Strip with Solder Tails 923292 3M

1 Male-Female DB-9 Cable (2m) AK131-2 Assmann

1 Wrapping Wire, 50’ Spool

35

Appendix 2 - Suggested Board Layout

(U2)
MC68B21

(U3)
74HC373

(U4)
74HC245

(U5)
PAL16L8B

(U6)
27C64-250

(U7)
27C64-250

(U8)
HM62256-LP15

(U1)
MC68HC11

(U9)
MAX232

C2

+

C10

+

+

C3

+

C4

+

C5

+

C6

C9

+

C7

+

C8

+

RP1

RESET

U10

C1

+

R1

R2

Y1

C13
C14 C15

C16

(E
E

P
R

O
M

)
J4

(B
U

F
F

A
LO

) +++

+

LED1

5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0

C11 C12

36 Yerem: Build Your Own MC68HC11 Computer Trainer

Appendix 3 - Schematic Diagram

A8

A9

A15
A14

A13
A12
A11
A10

AD7
AD6

AD5
AD4
AD3
AD2
AD1

AD0

AD7

AD6
AD5
AD4
AD3
AD2

AD1
AD0

AD7

AD6
AD5
AD4
AD3
AD2

AD1
AD0

A7
A6

A5
A4
A3
A2
A1

A0

14
13

8
7
4
3

18
17

11
12

9
10

15
16

13
14

PB7

PB6
PB5
PB4

PB3
PB2
PB1
PB0

PC7
PC6
PC5

PB4
PC3
PC2
PC1
PC0

36

35

38
37

32
31

34
33

13

14

11
12

17
18

15
16

B8
B7
B6

B5
B4
B3
B2
B1

A8
A7
A6

A5
A4
A3
A2
A1

7

6

9
8

3
2

5
4

15

11

19
16

5
2

9
6

8D

7D
6D
5D

4D
3D
2D
1D

8Q

7Q
6Q
5Q

4Q
3Q
2Q
1Q

*OE

D0

D1
D2
D3
D4
D5

D6
D7

17
16

19
18

12
11

15
13

23

21

3
4

24
25

7
8

5
6

9

10

A12
A11
A10

A9
A8
A7
A6
A5
A4

A3
A2
A1
A0

2

*PIA2

A12
A11
A10

A9
A8
A7
A6
A5

A4
A3
A2
A1
A0

VRH
VRL

20

22
21

17

19
18

1

4

2
3

5

8

6
7

47

44

46
45

43

42

*IRQ
*XIRQ

25
24

XTAL EXTAL

*RESET

1
C

19 1
A-B

12

I/O7

I/O6
I/O5
I/O4

I/O3
I/O2
I/O1
I/O0

28
27
26

E

30 29

1

3

2

9

11

12

10

4

5

6

8

14

13

7

C1+

C1-

V+ V-

C2+

C2-

40

41

R/*W
E

R/*W

LVI

39

2

3

1

*RESET

RESET

Vcc

Vcc

A15

A14
A13
A12
A11
A10

3

4

1
2

5
6

17

16

19
18

13

15
14

11
9

Vcc

J4

8
7

Vcc

22
*OE

*CE
R/*W

D0
D1

D2
D3
D4
D5
D6

D7

17

16

19
18

12
11

15
13

23
21

2

3
4

24
25

7
8

5

6

9
10

A12
A11
A10

A9
A8
A7
A6
A5
A4
A3

A2
A1
A0

A12
A11
A10

A9
A8
A7
A6
A5
A4

A3
A2
A1
A0

22

*CE
*OE

20

1
Vpp

27
*PGM

Vcc

D0
D1

D2
D3
D4
D5
D6

D7

17

16

19
18

12
11

15
13

23
21

2

3
4

24
25

7
8

5

6

9
10

A12
A11
A10

A9
A8
A7
A6
A5
A4
A3

A2
A1
A0

A12
A11
A10

A9
A8
A7
A6
A5
A4

A3
A2
A1
A0

22

*CE
*OE

20

1
Vpp

27
*PGM

Vcc

A13

A14
1 A14
26 A13

20
27

R/*W
E

D0
D1

D2
D3
D4
D5
D6

D7
*EN

1 2 3

(Bottom)

MODB(Vstby)

MODA(*LIR)

*BOOT
*SPARE

*RDIO

MC68HC11A1P
MC68B21
74HC373
74HC245

MAX232CPE

27C64-250
HM6264-LP15

PAL16L8-12

Vcc GND

48 23

20
20

10
10

20 1

28 14
1428

20 10

16 15

U1

U3
U4

U2

U8

U5

U9

U6,U7

(U8)

HM62256-LP15

*BOOT ($E000)

*SPARE ($C000)

*RAM ($0000)

74HC245
(U4)

(U3)

74HC373

(U1)

MC68HC11A1P

(U6)
27C64-250

(U5)
PAL16L8-12

(U7)
27C64-250

(U10)

MN13811-Q

(U9)
MAX232CPE 1

2

3

4

5
9

8

6

PA7

PA6
PA5
PA4
PA3
PA2

PA1
PA0

PD5
PD4
PD3

PD2
PD1
PD0

PE3
PE2
PE1

PE0

VRH

VRL

PA2

PA0

PA1

PA3
PA4
PA5

PA6
PA7

CA1
CA2

RS0
RS1

E
R/*W

*RESET

*CS2

26
27

28
29
30
31

35
36
23
25
21

34

39
40

9
8
7
6
5

4
3
2

17
16
15
14
13

12
11
10

A1
A0

E
R/*W

*RESET

CS1
CS0

Vcc

22
24

32

33

(U2)
MC68B21

PPA7
PPA6
PPA5

PPA4
PPA3
PPA2
PPA1
PPA0

CA2

CA1

D0

D1
D2
D3
D4
D5

D6
D7

D0
D1
D2

D3
D4
D5
D6
D7

PPB0
PPB1
PPB2
PPB3
PPB4

PPB5
PPB6
PPB7

19
18 CB1

CB2

PB0

PB1
PB2
PB3
PB4
PB5

PB6
PB7

CB1
CB2

7

DCD

TxD

RxD

DTR

PD1

PD0

D
a

ta
 B

u
s

(D
0

:D
7

)

A
d

d
re

ss B
u

s (A
0

:A
1

5
)

C
o

n
tro

l B
u

s

Input/Output Bus

Address Bus (A0:A15)

Vcc

T

R

T

R

DSR

CTS

12

I
I
I

I
I
I

*WRIO

*PIA1
*EXTRA
*RAM

I
I

I/O
I/O
I/O
I/O
I/O

I/O

O

O

I

I

*PIA1 ($A000)

O7
O6
O5

O3
O2
O1
O0

O4

O7

O5
O6

O4
O3
O2
O1
O0

(R2) 10 MΩ

(Y1) 8.0 MHz

(C11)
22 pF

(C12)
22 pF

(C14)

10µF

(C13)
10µF

(C15)

10µF

(C16)
10µF

(RP1)
4.7 kΩ

(RP1)
4.7 kΩ

AS

R/*W
PE0/AN0
PE1/AN1

PE2/AN2
PE3/AN3

PD0/RxD
PD1/TxD
PD2/MISO
PD3/MOSI

PD4/SCK
PD5/*SS

PA0/IC3
PA1/IC2
PA2/IC1
PA3/OC5/OC1
PA4/OC4/OC1

PA5/OC3/OC1
PA6/OC2/OC1
PA7/PAI/OC1

(C1)

100µF

(C2)

0.1µF

(C9)

0.1µF

(R1)
330 Ω

Vcc+5 VDC

(LED1)

37

Appendix 4 - Wire Wrapping Labels

5

10

15

20

25

30

35

40

45

50

PD2

PD3

PD4

PD5

PE0

PE1

PE2

PE3

VRL

VRH

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

PIA2

D0

D1

D2

D3

D4

D5

D6

D7

A0

A1

IRQ

XIRQ

RESET

R/*W

E

PPB0

PPB1

PPB2

PPB3

PPB4

PPB5

PPB6

PPB7

CB1

CB2

PPA0

PPA1

PPA2

PPA3

PPA4

PPA5

PPA6

PPA7

CA1

CA2

18

9 16

110

11 20

11

10 1

20

11

10 1

20

114

15 28

114

15 28

114

15 28

1

1

20

21 40

24

25 48

MC68HC11A1P

MC68B21

HM62256

27C64

27C64

PAL16L8

74HC373

74HC245

MAX232

50

45

40

35

25

20

15

10

5

30

H
E

A
D

E
R

GND

+5V

	1 Introduction
	2 The Structure of a Small Computer System
	2.1 The Design

	3 Building the Computer
	3.1 Ordering the Parts
	3.2 Downloading the Software
	3.3 Ordering the Data Sheets
	3.4 Construction
	3.4.1 Programming the EPROMs
	3.4.2 Programming the Chip Select PAL
	3.4.3 Board Layout
	3.4.4 How to Wire Wrap
	3.4.5 Wiring the Board

	4 Testing the Computer
	5 Using the Computer
	5.1 Programming
	5.1.1 Using BUFFALO
	5.1.2 Programming Your Own ROMs

	5.2 Interfacing
	5.2.1 How to use the MC6821
	5.2.2 Adding a Basic Input Port
	5.2.3 Adding a Basic Output Port
	5.2.4 Adding More PIAs

	6 Conclusion
	References
	Appendix 1 - Master Parts List
	Appendix 2 - Suggested Board Layout
	Appendix 3 - Schematic Diagram
	Appendix 4 - Wire Wrapping Labels

